874 research outputs found

    From design to research: Upper limb prosthetic research and development in Canada, 1960-2000

    Get PDF
    This paper examines the history of the research and development (R&D) of myoelectric upper limb prosthesis in Canada from 1960 to 2000. It focuses on two of the prosthetic research and training units (PRTUs) that were created and funded by the federal government as a result of the Thalidomide tragedy: the Rehabilitation Centre at the Ontario Crippled Children’s Centre (OCCC) and successor organizations, and the University of New Brunswick’s (UNB) Institute of Biomedical Engineering (the Institute or IBME). Both developed commercial systems for myoelectrically controlled arms and hands. We argue that, in contrast to the common view that research in universities and public research institutions has increasingly moved away from basic problems and to product development and commercialization over the period, research in this field has moved in the opposite direction. We explore these cases in detail and examine the forces at work in this change from a design-oriented approach to one that became research intensive

    Anomalous material-dependent transport of focused, laser-driven proton beams.

    Get PDF
    Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 Όm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed. In the experiment a 74 J, 670 fs laser drove a focusing proton beam that transported through different thicknesses of solid Mylar, Al, Cu or Au, eventually heating a rear, thin, Au witness layer. The XUV emission seen from the rear of the Au indicated a clear dependence of proton beam transport upon atomic number, Z, of the transport layer: a larger and brighter emission spot was measured after proton transport through the lower Z foils even with equal mass density for supposed equivalent proton stopping range. Beam transport dynamics pertaining to the observed heated spot were investigated numerically with a particle-in-cell (PIC) code. In simulations protons moving through an Al transport layer result in higher Au temperature responsible for higher Au radiant emittance compared to a Cu transport case. The inferred finding that proton stopping varies with temperature in different materials, considerably changing the beam heating profile, can guide applications seeking to controllably heat targets with intense proton beams

    Trace amine receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Trace amine-associated receptors were discovered from a search for novel 5-HT receptors [9], where 15 mammalian orthologues were identified and divided into two families. The TA1 receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Trace amine receptor [53]) has affinity for the endogenous trace amines tyramine, β-phenylethylamine and octopamine in addition to the classical amine dopamine [9]. Emerging evidence suggests that TA1 is a modulator of monoaminergic activity in the brain [90] with TA1 and dopamine D2 receptors shown to form constitutive heterodimers when co-expressed [28]. In addition to trace amines, receptors can be activated by amphetamine-like psychostimulants, and endogenous thyronamines

    Trace amine receptor in GtoPdb v.2023.1

    Get PDF
    Trace amine-associated receptors were discovered from a search for novel 5-HT receptors [9], where 15 mammalian orthologues were identified and divided into two families. The TA1 receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Trace amine receptor [58]) has affinity for the endogenous trace amines tyramine, β-phenylethylamine and octopamine in addition to the classical amine dopamine [9]. Emerging evidence suggests that TA1 is a modulator of monoaminergic activity in the brain [94] with TA1 and dopamine D2 receptors shown to form constitutive heterodimers when co-expressed [30]. In addition to trace amines, receptors can be activated by amphetamine-like psychostimulants, and endogenous thyronamines
    • 

    corecore